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Abstract 27 

Arboviral disease transmission by Aedes mosquitoes poses a major challenge to public 28 

health systems in Ecuador, where constraints on health services and resource allocation call for 29 

spatially informed management decisions. Employing a unique dataset of larval occurrence 30 

records provided by the Ecuadorian Ministry of Health, we used ecological niche models 31 

(ENMs) to estimate the current geographic distribution of Aedes aegypti in Ecuador, using 32 

mosquito presence as a proxy for risk of disease transmission. ENMs built with the Genetic 33 

Algorithm for Rule-Set Production (GARP) algorithm and a suite of environmental variables 34 

were assessed for agreement and accuracy. The top model of larval mosquito presence was 35 

projected to the year 2050 under various combinations of greenhouse gas emissions scenarios 36 

and models of climate change. Under current climatic conditions, larval mosquitoes were not 37 

predicted in areas of high elevation in Ecuador, such as the Andes mountain range, as well as the 38 

eastern portion of the Amazon basin. However, all models projected to scenarios of future 39 

climate change demonstrated potential shifts in mosquito distribution, wherein range 40 

contractions were seen throughout most of eastern Ecuador, and areas of transitional elevation 41 

became suitable for mosquito presence. Encroachment of Ae. aegypti into mountainous terrain 42 

was estimated to affect up to 4,215 km2 under the most extreme scenario of climate change, an 43 

area which would put over 12,000 people currently living in transitional areas at risk. This 44 

distributional shift into communities at higher elevations indicates an area of concern for public 45 

health agencies, as targeted interventions may be needed to protect vulnerable populations with 46 

limited prior exposure to mosquito-borne diseases. Ultimately, the results of this study serve as a 47 

tool for informing public health policy and mosquito abatement strategies in Ecuador. 48 

 49 
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Author summary 50 

The yellow fever mosquito (Aedes aegypti) is a medically important vector of arboviral diseases 51 

in Ecuador, such as dengue fever and chikungunya. Managing Ae. aegypti is a challenge to 52 

public health agencies in Latin America, where the use of limited resources must be planned in 53 

an efficient, targeted manner. The spatial distribution of Ae. aegypti can be used as a proxy for 54 

risk of disease exposure, guiding policy formation and decision-making. We used ecological 55 

niche models in this study to predict the range of Ae. aegypti in Ecuador, based on agency larval 56 

mosquito surveillance records and layers of environmental predictors (e.g. climate, altitude, and 57 

human population). The best models of current range were then projected to the year 2050 under 58 

a variety of greenhouse gas emissions scenarios and models of climate change. All modeled 59 

future scenarios predicted shifts in the range of Ae. aegypti, allowing us to assess human 60 

populations that may be at risk of becoming exposed to Aedes vectored diseases. As climate 61 

changes, we predict that communities living in areas of transitional elevation along the Andes 62 

mountain range are vulnerable to the expansion of Aedes aegypti.  63 

 64 

 65 

 66 
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Introduction 68 

Mosquito-borne disease transmission poses an ongoing challenge to global public health. 69 

This is especially true in much of Latin America, where arboviral disease management is 70 

complicated by the proliferation of mosquito vectors in tropical conditions, frequently coupled  71 

with limited resources for medical care and comprehensive vector control services [1]. In 72 

Ecuador, the Aedes aegypti mosquito is of particular medical importance as it is a competent 73 

vector for several established and emerging viral diseases, including all four serotypes of dengue 74 

virus (DENV), chikungunya (CHKV), Zika virus (ZKV), and yellow fever virus (YFV) [2–5]. 75 

The Ae. albopictus mosquito, also a competent vector of arboviruses, was recently reported for 76 

the first time in the city of Guayaquil, Ecuador [6]. Many of the diseases transmitted by Ae. spp. 77 

have no treatment beyond palliative care, and with the exception of yellow fever and dengue 78 

fever, there are no clinically established vaccines [7–9]. As a result, mosquito surveillance and 79 

control remain the best tools available for preventing and managing outbreaks of arboviral 80 

disease.  81 

In Ecuador, the Ministry of Health (Ministerio de Salud Pública (MSP)) oversees public 82 

health vector control services in the country, including mosquito surveillance, indoor residual 83 

spraying, larvicide application, and ultra-low volume (ULV) fogging. The MSP conducts larval 84 

index (LI) surveys at the household level, wherein containers of impounded water are sampled 85 

for mosquito larvae. Larval indices are among the most common indicators used by public health 86 

agencies to establish mosquito presence and quantify abundance, key considerations for 87 

understanding localized transmission potential and planning larval source reduction [10].  88 

Although cost effective relative to the delivery of clinical services, mosquito abatement and 89 

surveillance activities are nevertheless limited by financial constraints, necessitating informed 90 
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strategies for focusing resources and personnel [11,12]. This becomes a critical factor when 91 

developing surveillance and control programs on very large scales, such as an entire country, 92 

where misdirection of program activities can rapidly deplete program funding. Advancing the 93 

understanding of where vectors of interest can occur on the landscape would provide valuable 94 

guidance in communicating risk of exposure and avoiding the pitfalls associated with 95 

indiscriminately rolling out interventions.  96 

Like many mosquito species, the presence of Ae. spp. on the landscape is closely tied to 97 

environmental conditions [13,14]. Adult survival and larval development are largely driven and 98 

restricted by temperature, while successful oviposition and larval emergence rely on the 99 

persistence of impounded water in the environment [15–20]. In contrast with other medically 100 

important mosquito species in the region, such as Anopheline vectors of malaria, Ae. aegypti 101 

typically does very well in heavily urbanized environments, largely due to their reproductive 102 

strategy of exploiting small volumes of water in containers around the home as larval habitat 103 

[21]. In landscapes with heterogeneous topography, elevation also serves as a limiting factor for 104 

mosquito distributions, as temperature and precipitation change with altitude [22]. Situated in 105 

northwestern South America, Ecuador exemplifies high landscape diversity, with hot, humid 106 

areas of low elevation along the Pacific coast in the west and interior Amazon basin in the east, 107 

and the cool, arid Andes mountain range in the central portion of the country (Fig 1). 108 

Historically, the western coastal and interior regions experience a much higher incidence in 109 

mosquito-borne diseases than mountainous areas, where sharp increases in elevation and 110 

decreases in temperature limit the geographic distribution and vectorial capacity of the mosquito 111 

vector.  112 
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 113 

Fig. 1. Ecuador, situated on the northwestern coast of South America (inset), has historically 114 
high prevalence of mosquito-borne diseases. The Ecuadorian Ministerio de Salud Pública (MSP) 115 
conducted household entomological surveys of Aedes aegypti throughout the country from 2000 116 
– 2012. Spatially unique larval index (LI) occurrence records (n=478) collected in the survey 117 
were aggregated to cities and towns and used to model the ecological distribution of Ae. aegypti 118 
in Ecuador. 119 

 120 

The present-day distribution of Ae. aegypti is broadly defined by regional temperature 121 

and precipitation trends, but global climate change has the potential to significantly alter the 122 

future geographic range of mosquito vectors [3]. The Intergovernmental Panel on Climate 123 

Change has established four representative concentration pathways (RCP), or different scenarios 124 

for future greenhouse gas emissions, which are the basis for modeling future climates. Even 125 
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under the most conservative of these scenarios (RCP 2.6), mean global temperatures are 126 

projected to increase [23]. As temperature trends increase globally, it has been estimated that 127 

observed patterns in the distribution of mosquito vectors will shift accordingly; previous studies 128 

have projected that Aedes mosquitoes will increase their global range as temperature and rainfall 129 

patterns become more suitable under various climate change scenarios [17,24–26]. Modeling and 130 

visualizing changes in mosquito distributions at the national level will provide a useful tool for 131 

managing disease and planning the delivery of health services, as public health resources can be 132 

better allocated in anticipation of disease emergence in naïve populations driven by mosquito 133 

range expansions.  134 

Ecological niche models (ENMs) have been used to estimate current potential 135 

distributions in insect populations, including mosquitoes, as well as range expansions resulting 136 

from environmental and climate changes [27–30]. ENM methodologies have been applied to 137 

many systems, spanning regional to global scales, in an effort to estimate Aedes aegypti 138 

distribution and the associated risk of exposure to humans, often indicating that water availability 139 

and land cover factor heavily into overall mosquito habitat suitability  [3,27,31,32]. In Ecuador 140 

and other areas of Latin America, elevation also becomes a limiting factor for Ae. aegypti 141 

presence, though it is suggested that climate change may allow for the encroachment of 142 

mosquitoes into higher elevations [30,33]. While many prior studies have utilized records of 143 

adult stages of mosquitoes for ENMs, this study leverages existing larval surveillance data 144 

collected in Ecuador, providing a predictive tool about the source of mosquitoes in the 145 

environment. This complements predictive models for adult stages, particularly in considering 146 

potential for intervention, as it can target larvicidal approaches, rather than reactive adulticidal 147 

spraying methods. The Genetic Algorithm for Rule-Set Production (GARP) is a machine-148 
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learning algorithm that builds species ENMs using presence-only occurrence records and 149 

continuous environmental variables [34]. The genetic algorithm (GA) employed by GARP to 150 

build rule-sets for distribution models is stochastic in nature, resulting in a set of models from a 151 

single dataset of species occurrence records and allowing for the assessment of agreement 152 

between resulting models. This methodology offers a robust option for modeling the potential 153 

distribution of species on a landscape from presence-only records, as absence of a species is 154 

difficult to discern through historical records and field sampling (e.g. entomological surveys) 155 

[34,35]. GARP also provides a platform for projecting future climate scenarios onto the landscape 156 

with the natively generated rule-sets for species distribution prediction, allowing for the 157 

estimation of future geographic distributions [36]. 158 

Assessing current and future vector distributions in an ENM framework is useful for 159 

defining the spatial distribution and possible changes in risk exposure, using mosquito presence 160 

as a proxy for transmission risk. Previous work in Ecuador’s southern coast has focused on 161 

describing interannual variation in dengue transmission for a single region [37,38]. Here, we 162 

advance climate services available to the public health sector in Ecuador by providing climate-163 

informed tools to assist decision-making, examining potential geographic shifts in risk at broader 164 

spatial and temporal scales. In this study, we had three main objectives 1) use an ENM approach 165 

to estimate the current geographic range of Aedes aegypti in Ecuador using a unique set of larval 166 

survey data; 2) use projected climate data to model the future geographic range under a variety of 167 

climate change scenarios; and 3) compare current and future climate models to describe changes 168 

in Ae. aegypti range over time, where we hypothesized that larval Ae. aegypti distribution in 169 

Ecuador would expand into areas of higher elevation with projected increases in global 170 

temperature.  171 
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Methods  172 

Data sources  173 

From 2000 – 2012 the MSP sampled aquatic larval mosquitoes from impounded water in and 174 

around households, in cities and towns throughout mainland Ecuador. These data were collected 175 

year-round by vector control technicians from the National Service for the Control of Vector-176 

Borne Diseases (SNEM) of the MSP as part of routine vector surveillance activities. Positive LI 177 

records for Aedes aegypti were de-identified and aggregated to the administrative level of 178 

parroquia (township or parish) by the MSP for each year of the study. These de-identified, 179 

spatially aggregated data were made available to this study by the MSP.  180 

Informed disaggregation  181 

Parroquias represented in this data set range in size from roughly 2 km2 to over 8,000 km2 182 

(n=991). It was therefore felt to be prudent to reduce this high spatial variation prior to analyses. 183 

To correct for this extreme variation in the spatial resolution of aggregated presence data, in this 184 

study, the number of positive LI locations in a given parroquia were reassigned from the centroid 185 

of the administrative boundary to cities and villages, using a combination of OpenStreetMap and 186 

Google Earth satellite imagery in ArcMap (ver. 10.4) to identify developed areas. This method of 187 

informed disaggregation allowed for better spatial representation without compromising de-188 

identification.  189 

Socio-environmental data acquisition  190 

Environmental coverage datasets for current climatic conditions, comprised of rasterized altitude 191 

and 19 derived biophysical variables (Bioclim), were compiled using publicly available 192 

interpolated weather station data (WorldClim ver. 1.4., http://worldclim.org) (Table 1) [39]. 193 
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WorldClim provides long-term climate averages based on weather station records from 1950–194 

2000, a period coinciding with the start of the MSP’s larval survey. Because Ae. aegypti is 195 

primarily considered an urban vector in close association with human development, gridded 196 

human population density, adjusted to data from the United Nations World Population Prospects 197 

2015 Revision, was also included as an environmental predictor for initial model building as a 198 

proxy for built land covers (Socioeconomic Data and Applications Center (SEDAC) Gridded 199 

Population of the World (GPW)) [40,41]. A resolution of 2.5 arc-minutes (i.e. 5km grid cells) 200 

was chosen for all raster layers to reflect variability in the resolution of geolocated data.  201 

Table 1. Environmental variables used in building GARP models for Aedes aegypti in 202 
Ecuador. 203 

Environmental Variable (unit) Coded Variable 
Name 

Data Source 

Altitude (m) Alt Worldclim 
Annual Mean Temperature (°C) Bio 1 Bioclim 
Mean Diurnal Range (°C) Bio 2 Bioclim 
Isothermality  Bio 3 Bioclim 
Temperature Seasonality Bio 4 Bioclim 
Max Temp of Warmest Month (°C) Bio 5 Bioclim 
Min Temp of Coldest Month (°C) Bio 6 Bioclim 
Temperature Annual Range (°C) Bio 7 Bioclim 
Mean Temperature of Wettest Quarter Bio 8 Bioclim 
Mean Temp of Driest Quarter (°C) Bio 9 Bioclim 
Mean Temp of Warmest Quarter (°C) Bio 10 Bioclim 
Mean Temp of Coldest Quarter (°C) Bio 11 Bioclim 
Annual Precipitation (mm) Bio 12 Bioclim 
Precip of Wettest Month (mm) Bio 13 Bioclim 
Precip of Driest Month Bio 14 Bioclim 
Precip Seasonality Bio 15 Bioclim 
Precip of Wettest Quarter (mm) Bio 16 Bioclim 
Precip of Driest Quarter (mm) Bio 17 Bioclim 
Precip of Warmest Quarter (mm) Bio 18 Bioclim 
Precip of Coldest Quarter (mm) Bio 19 Bioclim 
Human Population Density GPW SEDAC Gridded Population 

of the World (GPW) 
 204 
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Environmental coverages for estimated future climatic conditions in the year 2050 were 205 

taken from forecasted Bioclim variables, allowing for direct comparison between current and 206 

future predicted ranges. We chose three general circulation models (GCMs) of physical climate 207 

processes commonly used in projecting shifts in species distributions, the Beijing Climate Center 208 

Climate System Model (BCC-CSM-1), National Center for Atmospheric Research Community 209 

Climate System Model (CCSM4), and the Hadley Centre Global Environment Model version 2, 210 

Earth-System configuration (HADGEM2-ES) under the four standard emissions scenarios (RCP 211 

2.6, RCP 4.5, RCP 6.0, RCP 8.5) [23,42–46]. Gridded human population data available through 212 

SEDAC are only projected through the year 2020 [40]. To obtain human population for the year 213 

2050, a simple linear extrapolation wherein we assume a stable rate of growth, was performed on 214 

a pixel-by-pixel basis in ArcMap with available years of SEDAC data, a growth trend which 215 

mirrors more sophisticated cohort-based population estimates for Ecuador projected for the same 216 

time period [47,48].  217 

Ecological niche modeling  218 

Ecological niche models (ENMs) reflecting current and future climate conditions were built 219 

using DesktopGARP ver. 1.1.3 (DG) [35]. LI point records and environmental coverage datasets 220 

were prepared for modeling using the ‘GARPTools’ package (co-developed by C.G. Haase and 221 

J.K. Blackburn) in the program R (ver. 3.3.1). Spatially unique LI records (n=478) were split into 222 

75% training (n=358) and 25% testing datasets (n=119) for ten randomly selected iterations; 223 

training datasets were used in model building and testing datasets were used to compute model 224 

accuracy metrics [34,35,49]. Ten experiments were run in DG, each using one of the randomly 225 

selected LI training datasets and the full set of current environmental coverage variables (Table 226 

2). Each experiment was run for 200 models, allowing for a maximum of 1,000 iterations with a 227 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/404293doi: bioRxiv preprint first posted online Aug. 30, 2018; 

http://dx.doi.org/10.1101/404293


12 
 

convergence limit of 0.01. Occurrence data were internally partitioned into 75% training/25% 228 

testing for model building, and top models were selected using the ‘Best Subsets’ option, 229 

specifying a 10% hard omission threshold and 50% commission threshold [50]. The ten top best 230 

subsets models from each GARP experiment were summated with the GARPTools package to 231 

assess model agreement and accuracy. Model accuracy metrics for each GARP experiment were 232 

calculated from the 25% testing dataset withheld from the model building process. Three 233 

measures of accuracy, calculated in GARPTools, were used to compare best subsets from each 234 

experiment: receiver operator characteristic (ROC) curve with area under the curve (AUC), 235 

commission, and omission [51].  236 

Table 2. Accuracy metrics for best model subsets built using the full set of environmental 237 
coverage variables. Each experiment was performed with a randomly chosen subset (75%) 238 
of LI presence points.  239 

Experiment AUC Avg. 
Commission 

Avg. Omission 

1 0.72 63.98 3.70 
2 0.73 64.19 3.19 
3 0.68 59.49 8.40 
4 0.73 62.01 5.96 
5 0.67 67.02 5.55 
6 0.73 60.86 4.03 
7 0.70 67.18 2.69 
8 0.76 64.88 5.63 
9 0.74 58.78 4.45 
10 0.72 60.92 5.63 

 240 

The model building process was then repeated in DG with the best performing training 241 

dataset (i.e. high AUC relative to low omission), comparing full model performance with more 242 

parsimonious sets of environmental variables. In addition to variable combinations selected 243 

based on previous literature, the GARPTools package was used to extract ruleset trends from the 244 

full model (e.g. prevalence and importance of given variables in the resulting model) to assemble 245 
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additional candidate variable sets for model comparison. The subset of models with the highest 246 

AUC and lowest omission (i.e. best model) was chosen as the most probable estimate of current 247 

larval mosquito geographic distribution, and rulesets generated from the best model were then 248 

projected to the year 2050 for all combinations of GCMs and RCPs. To compare the relative 249 

changes in geographic predictions between current climate and future scenarios, the best subsets 250 

of current and projected future models for each RCP scenario were recoded as binary geographic 251 

distributions (i.e. presence and absence) in ArcMap, where cells with model agreement of ≥ 6 252 

were considered present. Recoded distributions were combined using the ‘Raster Calculator’ tool 253 

in the Spatial Analyst extension of the program ArcMap, allowing for the visualization of range 254 

agreement across GCMs. The number of people at risk in areas of expanding mosquito 255 

distribution, where range expansion was predicted under at least one GCM, was estimated in 256 

ArcMap, using the Raster Calculator tool to extract information on GPW and extrapolated 257 

population for the year 2050. 258 

 259 

Results 260 

The original dataset of LI occurrences in Ecuador, provided by the MSP, consisted of 261 

3,655 collection events aggregated to 374 parroquia centroids, indicating the number of 262 

parroquias that had positive surveillance results for Ae. aegypti larvae during the study period. 263 

Dis-aggregation of these data yielded 478 spatially unique locations within these parroquias, 264 

corresponding with areas of human habitation regularly surveyed by the MSP. Incorporating 265 

prior knowledge regarding the agency’s collection of data in developed areas allowed for the 266 

adoption of a finer spatial scale for analysis without changing the overall distribution of larval 267 
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mosquito presence in Ecuador (e.g. mosquitoes remained conspicuously absent in most high-268 

elevation parroquias located in the Andes mountains). 269 

Much of Ecuador was predicted to be suitable for the presence of Aedes aegypti larvae 270 

under current climatic conditions, with the notable exception of the eastern portion of the country 271 

associated with the Amazon basin and high elevation areas associated with the Andes mountain 272 

range, running north to south through the center of the country (Fig 2). This iteration of model 273 

subsets generated by GARP had the highest AUC, relative to low omission (AUC=0.73, Avg. 274 

Commission=63.47, Avg. Omission=3.02), and was built with a reduced set of environmental 275 

variables including altitude, human population, maximum temperature of the warmest month, 276 

temperature annual range, mean temperature of the wettest month, mean temperature of the 277 

driest month, mean temperature of the warmest quarter, mean temperature of the coldest quarter, 278 

precipitation of the wettest month, precipitation seasonality, precipitation of the driest quarter, 279 

and precipitation of the coldest quarter (Table 3).  280 

Table 3. Accuracy metrics for best model subsets built using the best-ranked training 281 
dataset and selected subsets of environmental coverages. 282 

Experiment Variable Subset AUC Avg. 
Commission 

Avg. 
Omission 

1 Full Model 0.77 64.88 5.63 
2 Alt, GPW, Bio 5,7,8,9,10-11,13,15 0.71 67.38 2.60 
3 Alt, GPW, Bio 2,5,7-11,13,15-17 0.71 67.32 3.28 
4 Alt, GPW, Bio 1,5,6,8,10-11,14,17,19 0.63 65.68 8.32 
5 Alt, Bio 5,8,10,16,17 0.62 64.30 12.01 
6 Alt, GPW, Bio 5,8,10,16,17 0.66 67.95 2.60 
7 Alt, Bio 3,5,8,10,12-13,16-17,19 0.65 68.37 3.19 
8 Alt, GPW, Bio 3,5,8,10,12-13,16-17,19 0.66 69.88 2.18 
9 Alt, Bio 1,3,5,7,8,9,11-13,15-17,19 0.71 64.62 6.13 
10 Alt, GPW, Bio 1,3,5,7-9,11-13,15-17,19 0.72 63.39 3.28 
11 Alt, Bio 1-3,5,7-13,15-17,19 0.71 61.85 4.54 
12 Alt, GPW, Bio 1-3,5,7-12,13,15-17,19 0.72 64.09 2.94 
13 Alt, Bio 5,7-11,13,15 0.70 65.29 4.12 
14 Alt, GPW, Bio 5,7-11,13,15,17,19 0.73 63.47 3.02 
15 Alt, GPW, Bio 1,3,5,7-11,13,15-17,19 0.71 66.20 2.06 
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16 Alt, GPW, Bio5,7-11,13,15-17,19 0.69 67.60 3.19 
17 Alt, GPW, Bio 5,7,8,9,11,13,15,17,19 0.71 66.22 2.44 
18 Alt, GPW, Bio 1,5,7-11,13,15,17,19 0.71 66.90 2.18 
19 Alt, GPW, Bio 1,3,5,7-13,15-17,19 0.71 63.54 3.11 
20 Alt, Bio 5,7-11,13,15,17,19 0.71 63.24 4.62 

 283 

 284 

Fig. 2. Agreement of best model subsets built with best-ranked suite of environmental variables 285 
for larval Aedes aegypti presence in Ecuador under current climate conditions. Models had high 286 
levels of agreement in the western coastal lowlands, and lower levels of agreement in the eastern 287 
Amazon basin. 288 

 289 

The projected geographic distribution of larval Ae. aegypti for the year 2050 (Fig 3B1 290 

and 3B2, 3C1 and 3C2, 3D1 and 3D2, S1 and S2 Figs), built with the best-performing selection 291 
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of environmental coverages under four climate change scenarios, showed marked changes in 292 

pattern when compared with estimated mosquito presence under current conditions (Fig 3A1 and 293 

3A2, S1 and S2 Figs). Potential distributional shifts were generally consistent across GCMs, with 294 

slight range expansions into areas of higher elevation and large portions of the eastern 295 

Amazonian basin predicting mosquito absence (Fig 3, S1 and S2 Figs). Combining the current 296 

and future model agreement rasters for best subset models by RCP revealed predicted areas of 297 

geographic stability in western Ecuador and the eastern foothills of the Andes, range contraction 298 

throughout much of Amazon basin in the east, and range expansions along transitional elevation 299 

boundaries over time (Fig 4). Range expansions and contractions were generally consistent 300 

across climate models, with the magnitude of distribution change increasing with more extreme 301 

climate change scenarios (Fig 4). Similarly, the human population with the potential to 302 

experience increased exposure to mosquito presence generally increases with RCP, with an 303 

additional 9,473 (RCP2.6), 11,155 (RCP4.5), 10,492 (RCP6.0), and 12,939 (RCP8.5) people 304 

currently living in areas of transitional elevation estimated at risk of becoming exposed under 305 

different climate change scenarios (Table 4). 306 

Table 4. Estimated human population inhabiting areas of transitional elevation in Ecuador, 307 
which may experience increased exposure to moquito-borne disease transmission under 308 
climate change. 309 

Representative 
Concentration 

Pathway (RCP) 

GPW 2010 
Population 

Projected 2050 
Population 

Area (km2) 

RCP 2.6 9,473  15,399 2,755 
RCP 4.5 11,155 18,439 3,530 
RCP 6.0 10,492 17,100 3,155 
RCP 8.5 12,939 21,298 4,215 

 310 

  311 
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312 
Fig. 3. Agreement of best model subsets built with best ranked suite of environmental variables 313 
for larval Aedes aegypti presence in Ecuador under A) current climate conditions and future 314 
climate conditions projected to the year 2050 under Representative Concentration Pathway (RCP) 315 
2.6 (B1,C1,D1) and 8.5 (B2,C2,D2) for the B) BCC-CSM-1, C) CCSM4, and D) HADGEM2-ES 316 
General Circulation Models (GCM) climate models. 317 

 318 
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 319 

Fig. 4. Best model subsets for current and future climate (GCMs projected to the year 2050) were 320 
combined by RCP emissions scenarios to illustrate the estimated contraction and expansion of 321 
larval Aedes aegypti geographic range in Ecuador. 322 

 323 

Discussion 324 

The predicted current geographic distribution of larval Aedes aegypti suitability in Ecuador, 325 

under current climate conditions, largely reflects present-day risk maps for many of the 326 

mosquito-borne diseases currently circulating in the country, wherein populations living at high 327 

altitudes are not considered at-risk for transmission [52]. Predicted larval distributions are 328 
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roughly continuous in the eastern and western portions of Ecuador, but are sharply restricted 329 

along increasing elevation gradients in the central portion of the country, the area corresponding 330 

with the location of the Andes mountain range (Fig 2) [9]. This conspicuous absence of 331 

mosquitoes in the Andes reflects the generally protective nature of high mountain elevations 332 

from mosquito presence, with all models predicting larval mosquito absence throughout central 333 

Ecuador (Figs 2–6). The predicted absence of Ae. aegypti in the eastern portion of the Amazon 334 

basin is notable, as this is a region currently perceived as high-risk for mosquito exposure by 335 

public health officials despite having low human population density, mostly owing to its low 336 

altitude (Fig 2). Although similar in elevation to regions of active disease transmission in the 337 

West, the hydrology of the Amazon basin differs considerably from coastal areas. Previous work 338 

in this region suggests a great deal of spatial variability in the basin with regards to precipitation 339 

and drainage patterns [53,54]. Given that the mosquito life cycle depends heavily on the 340 

availability of water in the environment, spatial discrepancies in precipitation could account for 341 

the low model agreement of mosquito presence in the easternmost portion of the Amazon.  342 

Range expansion of Ae. aegypti into higher elevations as a result of changing climate was 343 

supported across GCM models and emissions scenarios (Figs 3–7). All best model subsets 344 

suggest that areas of transitional elevation along the eastern and western peripheries of the Andes 345 

mountains may experience some level of increased exposure to the presence of mosquitoes, 346 

though much of the mountain range, including densely populated areas like the capital city, 347 

Quito, will remain unsuitable habitat. The intrusion of Ae. aegypti into areas of transitioning 348 

elevation represents a potential area of concern for public health managers, as communities in 349 

these areas are largely protected from mosquito exposure and associated diseases under current 350 

climatic conditions. Excluding travel-related cases, reporting of arboviral diseases in Ecuador’s 351 
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mountain dwelling populations is quite low, although there are low-lying valleys near Quito that 352 

may be suitable for arbovirus transmission. Accordingly, the MSP primarily directs mosquito-353 

borne disease outreach and intervention efforts to high-risk communities, particularly in large 354 

coastal cities with consistently high disease incidence, such as Guayaquil and Machala. As a 355 

result, communities situated in the foothills of the Andes will not necessarily have the same risk 356 

perceptions and preventative behaviors as those communities burdened with historically high 357 

incidence of mosquito-borne diseases. This sets the stage for potential disparities in preventative 358 

knowledge and health services should Aedes mosquitoes expand into naïve populations [5,55]. 359 

Conversely, extirpation of Ae. aegypti, especially the large range contraction predicted in 360 

Amazonian Ecuador, has the potential to conserve valuable resources by triggering allocation 361 

shifts as unsuitable areas no longer support active disease transmission.  362 

Our findings are broadly consistent with a previous coarser scale ENM analysis of adult 363 

mosquitoes in Ecuador, which suggests that while Aedes mosquitoes may shift into highland 364 

areas under changing climate conditions, the total area of suitable habitat will ultimately decrease 365 

as localized climatic conditions favor extirpation [30]. However, models of Aedes distribution in 366 

the previous study were made through the year 2100, representing an extended time horizon for 367 

guiding agency decision making. While predicted ranges in 2100 are visually similar to results 368 

presented here, notable discrepancies exist between the spatial distributions predicted in our 369 

models and the previous study for 2050, where the previous model predicts widespread absence 370 

of mosquitoes in central Ecuador and presence throughout much of the eastern Amazon basin. In 371 

contrast to our methods, Escobar et al. [30] used a different niche modeling algorithm, a different 372 

model of climate change (A2), a coarser spatial resolution (20 km), and combined global species 373 

occurrence for two adult arbovirus vectors, Ae. aegypti and the Asian tiger mosquito (Aedes 374 
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albopictus), to predict pooled arbovirus risk throughout Ecuador. Though Ae. aegpyti and Ae. 375 

albopictus are competent vectors of diseases that occur in Ecuador (e.g. dengue, chikungunya, 376 

Zika), these species differ significantly in their physiology, possibly driving observed 377 

discrepancies between the models of pooled adult Aedes spp. risk and larval Ae. aegypti range 378 

[56]. Reaching consensus across ENMs is a known area of conflict in ecology that requires more 379 

research, where various methodologies can lead to vastly different forecasts of geographic 380 

distributions and risk, making direct comparisons between models difficult [57]. Future studies 381 

combining multiple approaches and comparing the impact of input on models could help resolve 382 

this conundrum.  383 

We chose a moderately low spatial resolution for this study (5km raster cells) to reflect 384 

the highest level of precision that could be assigned to larval mosquito occurrence (i.e. points 385 

could be matched to cities or clusters of villages, but not to individual households or 386 

neighborhoods). This scale of analysis presents a limitation in applying resulting ENMs for local 387 

management decisions. Arboviral disease transmission and larval mosquito presence, especially 388 

for Ae. aegypti, are typically managed at the household or neighborhood level, and although we 389 

can use these results to discuss regional changes in mosquito distribution throughout Ecuador, 390 

we cannot overstate the findings as a means to assess risk at the level of disease transmission 391 

[58]. Furthermore, the LI survey conducted by the MSP was limited in that focus was placed on 392 

sampling areas with perceived arbovirus transmission risk throughout Ecuador, especially 393 

households in densely populated urban centers and established communities where cases had 394 

been reported in the past. Low accessibility and human population density in Ecuador’s eastern 395 

basin region may have contributed to under sampling of mosquito presence in these areas, 396 

possibly accounting for low model agreement in this area. Ultimately, robust vector surveillance 397 
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for Ae. aegypti in eastern Ecuador would be required to validate absence in this region, though 398 

such intensive ground-truthing would be wrought with logistical concerns, including diversion of 399 

scarce surveillance resources from high-demand management districts and the inherent difficulty 400 

of establishing “true” absence via surveys.  401 

 Aedes aegypti is a globally invasive species, owing much of its success to its close 402 

connection with human activity and urban environments. As a result, microclimate can become a 403 

critical factor in determining true habitat suitability, and there are many examples of 404 

anthropogenic structures providing a buffering effect, or refuge, against climatic conditions that 405 

would be otherwise physiologically limiting to insect vectors [5,59–62]. Similarly, dramatic 406 

shifts in species compositions in Ecuador, mediated by elevation, also occur on very fine spatial 407 

scales [63,64]. Moving forward, observed areas of range expansion on the edge of unsuitable 408 

habitat may be better modeled at finer resolutions, which would aid in making community-409 

targeted management decisions based on estimated risk.  410 

Based on the results of this study, we conclude that the geographic distribution of larval 411 

Aedes aegypti in Ecuador will be impacted by projected shifts in climate. Extensive changes in 412 

modeled vector distributions were observed even under the most conservative climate change 413 

scenario, and these changes, although consistent in pattern, became more evident with 414 

increasingly high greenhouse gas emissions scenarios. Although there is a continued need for 415 

surveillance activities, these findings enable us to anticipate transitioning risk of arboviral 416 

diseases in a spatial context throughout Ecuador, allowing for long-term planning of agency 417 

vector control strategies.  418 

  419 
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Supporting information 627 

S1 Table. Prevalence of environmental coverages in model building ruleset.  628 

Environmental Variable Ruleset Prevalence 

Alt 0.94 
Bio 5 0.94 
Bio 7 0.91 
Bio 8 0.82 
Bio 9 0.85 
Bio 10 0.85 
Bio 11 0.74 
Bio 13 0.88 
Bio 15 0.68 
Bio 17 0.94 
Bio 19 0.85 
GPW 0.74 
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S1 Fig. Agreement of best model subsets built with best ranked suite of environmental variables 634 
for larval Aedes aegypti presence in Ecuador under A) current climate conditions and future 635 
climate conditions projected to the year 2050 under Representative Concentration Pathway 636 
(RCP) 4.5 for the B) BCC-CSM-1, C) CCSM4, and D) HADGEM2-ES General Circulation 637 
Models (GCM) climate models. 638 

 639 

  640 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/404293doi: bioRxiv preprint first posted online Aug. 30, 2018; 

http://dx.doi.org/10.1101/404293


31 
 

 641 

 642 

S2 Fig. Agreement of best model subsets built with best ranked suite of environmental variables 643 
for larval Aedes aegypti presence in Ecuador under A) current climate conditions and future 644 
climate conditions projected to the year 2050 under Representative Concentration Pathway 645 
(RCP) 6.0 for the B) BCC-CSM-1, C) CCSM4, and D) HADGEM2-ES General Circulation 646 
Models (GCM) climate models. 647 
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